- 一、问题描述
- 二、贪婪最佳优先搜索和A*搜索的理解
- 1.贪婪最佳优先搜索
- 2.A*搜索算法
- 三、A*搜索的代码
- 1.A*搜索的思路
- 2.A*搜索的代码
- 四、结果与两种算法的对比
一、问题描述
在罗马尼亚旅游问题中,搜索从城市Arad出发到达Bucharest的路径。其中neighbor_map可以得到所需要的城市和哪些城市相邻,比如:Arad有三个邻居:Zerind,Sibiu,Timisora,由Arad到达这三个城市的代价可由以下字典neighbormapWithweight获得。城市的坐标由如下字典提供,Romania_map_location。
请用贪婪最佳优先搜索和A*搜索求出最短路径。
字典如下:
neighbor_map = {'Arad': ['Zerind', 'Sibiu', 'Timisoara'], 'Bucharest': ['Urziceni', 'Pitesti', 'Giurgiu', 'Fagaras'], 'Craiova': ['Drobeta', 'Rimnicu', 'Pitesti'], 'Drobeta': ['Mehadia'], 'Eforie': ['Hirsova'], 'Fagaras': ['Sibiu'], 'Hirsova': ['Urziceni'], 'Iasi': ['Vaslui', 'Neamt'], 'Lugoj': ['Timisoara', 'Mehadia'], 'Oradea': ['Zerind', 'Sibiu'], 'Pitesti': ['Rimnicu'], 'Rimnicu': ['Sibiu'], 'Urziceni': ['Vaslui']} neighbormapWithweight = {'Arad': {'Zerind': 75, 'Sibiu': 140, 'Timisoara': 118}, 'Bucharest': {'Urziceni': 85, 'Pitesti': 101, 'Giurgiu': 90, 'Fagaras': 211}, 'Craiova': {'Drobeta': 120, 'Rimnicu': 146, 'Pitesti': 138}, 'Drobeta': {'Mehadia': 75}, 'Eforie': {'Hirsova': 86}, 'Fagaras': {'Sibiu': 99}, 'Hirsova': {'Urziceni': 98}, 'Iasi': {'Vaslui': 92, 'Neamt': 87}, 'Lugoj': {'Timisoara': 111, 'Mehadia': 70}, 'Oradea': {'Zerind': 71, 'Sibiu': 151}, 'Pitesti': {'Rimnicu': 97}, 'Rimnicu': {'Sibiu': 80}, 'Urziceni': {'Vaslui': 142} } romania_map_locations = dict( Arad=(91, 492), Bucharest=(400, 327), Craiova=(253, 288), Drobeta=(165, 299), Eforie=(562, 293), Fagaras=(305, 449), Giurgiu=(375, 270), Hirsova=(534, 350), Iasi=(473, 506), Lugoj=(165, 379), Mehadia=(168, 339), Neamt=(406, 537), Oradea=(131, 571), Pitesti=(320, 368), Rimnicu=(233, 410), Sibiu=(207, 457), Timisoara=(94, 410), Urziceni=(456, 350), Vaslui=(509, 444), Zerind=(108, 531))二、贪婪最佳优先搜索和A*搜索的理解 1.贪婪最佳优先搜索
- 贪婪优先搜索试图优先扩展最接近目标的结点,通过一个启发函数h(n)来预测结点是否接近目标。
- h(n)=结点n到目标节点的最小代价路径的代价估计值
- 这个代价估计值可以是题目中给出的,或者是两点之间的距离——例如:曼哈顿距离、欧式距离等。
- 贪婪优先搜索类似于深度优先搜索。通过不断扩展frontier表中具有最小代价值的结点进行搜索。
- 贪婪优先搜索有时可能找不到解。
贪婪优先搜索的搜索过程:
如上图所示,贪婪优先算法先扩展frontier表中代价最小的结点。在本例中,由于路径距离在不断减小,于是不会回溯并走到其他的路线上,而若其他路径可拓展的结点还有更小的代价,根据算法就会优先拓展代价更小的结点。
在写这一篇内容之前我完全理解错了A*搜索的含义,我将根据书籍资料,以及我理解错误的点对其进行深入说明
- A*算法综合了贪婪最佳优先搜索和一致代价搜索。但是,其算法本质就是一致代价搜索!因为它只是改变了一致代价搜索中对于frontier表的排序条件,改用累计代价和预估代价的和来进行排序,而不改变其他。
- 一致代价搜索是优先扩展所有可拓展结点中累计代价最小的一个。也就是无论搜索的步数到达到达哪一步,该算法总是首先考虑所有可拓展的结点中,从开始结点到该结点的代价和最小的结点。其算法将附图在下方。
- 它判断寻找新结点的方式是通过f(n)=g(n)+h(n)。h(n)我们在贪婪优先搜索中说过是一个启发函数,表示从n结点到目标结点的代价估计值。而g(n)则是一致代价中从开始结点到n结点的已知代价。
- 在满足可采纳性条件和一致性条件的情况下,该算法可以求出最优解。
一致代价搜索的伪代码:
A*搜索的搜索过程:
因为A*搜索的本质就是一致代价搜索,所以依据上述一致代价搜索的伪代码,将frontier表中的排序方式按照f(n)来进行就可以。
但是在题目中给出的字典表并不全面,搜索过程中可能会出现有些困难的部分,所以我先进行了基本的字典表处理,处理过程在第四部分内容中有进行注释,结果如下:
#邻接城市表: {'Zerind': {'Arad': 75, 'Oradea': 71}, 'Sibiu': {'Arad': 140, 'Fagaras': 99, 'Oradea': 151, 'Rimnicu': 80}, 'Lugoj': {'Timisoara': 111, 'Mehadia': 70}, 'Rimnicu': {'Sibiu': 80, 'Craiova': 146, 'Pitesti': 97}, 'Timisoara': {'Arad': 118, 'Lugoj': 111}, 'Drobeta': {'Mehadia': 75, 'Craiova': 120}, 'Fagaras': {'Sibiu': 99, 'Bucharest': 211}, 'Vaslui': {'Iasi': 92, 'Urziceni': 142}, 'Arad': {'Zerind': 75, 'Sibiu': 140, 'Timisoara': 118}, 'Craiova': {'Drobeta': 120, 'Rimnicu': 146, 'Pitesti': 138}, 'Neamt': {'Iasi': 87}, 'Iasi': {'Vaslui': 92, 'Neamt': 87}, 'Hirsova': {'Urziceni': 98, 'Eforie': 86}, 'Oradea': {'Zerind': 71, 'Sibiu': 151}, 'Giurgiu': {'Bucharest': 90}, 'Pitesti': {'Rimnicu': 97, 'Bucharest': 101, 'Craiova': 138}, 'Eforie': {'Hirsova': 86}, 'Urziceni': {'Vaslui': 142, 'Bucharest': 85, 'Hirsova': 98}, 'Bucharest': {'Urziceni': 85, 'Pitesti': 101, 'Giurgiu': 90, 'Fagaras': 211}, 'Mehadia': {'Drobeta': 75, 'Lugoj': 70}}
然后依据给出的Problem和Node类补全其余代码即可。
2.A*搜索的代码import math import sys from collections import deque class Problem: """The abstract class for a formal problem. You should subclass this and implement the methods actions and result, and possibly __init__, goal_test, and path_cost. Then you will create instances of your subclass and solve them with the various search functions.""" def __init__(self, initial, goal=None): """The constructor specifies the initial state, and possibly a goal state, if there is a unique goal. Your subclass's constructor can add other arguments.""" self.initial = initial self.goal = goal def actions(self, state): """Return the actions that can be executed in the given state. The result would typically be a list, but if there are many actions, consider yielding them one at a time in an iterator, rather than building them all at once.""" raise NotImplementedError def result(self, state, action): """Return the state that results from executing the given action in the given state. The action must be one of self.actions(state).""" raise NotImplementedError def goal_test(self, state): """Return True if the state is a goal. The default method compares the state to self.goal or checks for state in self.goal if it is a list, as specified in the constructor. Override this method if checking against a single self.goal is not enough.""" if isinstance(self.goal, list): return is_in(state, self.goal) else: return state == self.goal def path_cost(self, c, state1, action, state2): """Return the cost of a solution path that arrives at state2 from state1 via action, assuming cost c to get up to state1. If the problem is such that the path doesn't matter, this function will only look at state2. If the path does matter, it will consider c and maybe state1 and action. The default method costs 1 for every step in the path.""" return c + 1 def value(self, state): """For optimization problems, each state has a value. Hill Climbing and related algorithms try to maximize this value.""" raise NotImplementedError # ______________________________________________________________________________ class Node: """A node in a search tree. Contains a pointer to the parent (the node that this is a successor of) and to the actual state for this node. Note that if a state is arrived at by two paths, then there are two nodes with the same state. Also includes the action that got us to this state, and the total path_cost (also known as g) to reach the node. Other functions may add an f and h value; see best_first_graph_search and astar_search for an explanation of how the f and h values are handled. You will not need to subclass this class.""" def __init__(self, state, parent=None, action=None, path_cost=0): """Create a search tree Node, derived from a parent by an action.""" self.state = state self.parent = parent self.action = action self.path_cost = path_cost self.depth = 0 if parent: self.depth = parent.depth + 1 def __repr__(self): return "四、结果与两种算法的对比".format(self.state) def __lt__(self, node): return self.state < node.state def expand(self, problem): """List the nodes reachable in one step from this node.""" return [self.child_node(problem, action) for action in problem.actions(self.state)] def child_node(self, problem, action): """[Figure 3.10]""" next_state = problem.result(self.state, action) next_node = Node(next_state, self, action, problem.path_cost(self.path_cost, self.state, action, next_state)) return next_node def solution(self): """Return the sequence of actions to go from the root to this node.""" return [node.state for node in self.path()[0:]] def path(self): """Return a list of nodes forming the path from the root to this node.""" node, path_back = self, [] while node: path_back.append(node) node = node.parent return list(reversed(path_back)) # We want for a queue of nodes in breadth_first_graph_search or # astar_search to have no duplicated states, so we treat nodes # with the same state as equal. [Problem: this may not be what you # want in other contexts.] def __eq__(self, other): return isinstance(other, Node) and self.state == other.state def __hash__(self): # We use the hash value of the state # stored in the node instead of the node # object itself to quickly search a node # with the same state in a Hash Table return hash(self.state) neighbor_map = {'Arad': ['Zerind', 'Sibiu', 'Timisoara'], 'Bucharest': ['Urziceni', 'Pitesti', 'Giurgiu', 'Fagaras'], 'Craiova': ['Drobeta', 'Rimnicu', 'Pitesti'], 'Drobeta': ['Mehadia'], 'Eforie': ['Hirsova'], 'Fagaras': ['Sibiu'], 'Hirsova': ['Urziceni'], 'Iasi': ['Vaslui', 'Neamt'], 'Lugoj': ['Timisoara', 'Mehadia'], 'Oradea': ['Zerind', 'Sibiu'], 'Pitesti': ['Rimnicu'], 'Rimnicu': ['Sibiu'], 'Urziceni': ['Vaslui']} neighbormapWithweight = {'Arad': {'Zerind': 75, 'Sibiu': 140, 'Timisoara': 118}, 'Bucharest': {'Urziceni': 85, 'Pitesti': 101, 'Giurgiu': 90, 'Fagaras': 211}, 'Craiova': {'Drobeta': 120, 'Rimnicu': 146, 'Pitesti': 138}, 'Drobeta': {'Mehadia': 75}, 'Eforie': {'Hirsova': 86}, 'Fagaras': {'Sibiu': 99}, 'Hirsova': {'Urziceni': 98}, 'Iasi': {'Vaslui': 92, 'Neamt': 87}, 'Lugoj': {'Timisoara': 111, 'Mehadia': 70}, 'Oradea': {'Zerind': 71, 'Sibiu': 151}, 'Pitesti': {'Rimnicu': 97}, 'Rimnicu': {'Sibiu': 80}, 'Urziceni': {'Vaslui': 142} } romania_map_locations = dict( Arad=(91, 492), Bucharest=(400, 327), Craiova=(253, 288), Drobeta=(165, 299), Eforie=(562, 293), Fagaras=(305, 449), Giurgiu=(375, 270), Hirsova=(534, 350), Iasi=(473, 506), Lugoj=(165, 379), Mehadia=(168, 339), Neamt=(406, 537), Oradea=(131, 571), Pitesti=(320, 368), Rimnicu=(233, 410), Sibiu=(207, 457), Timisoara=(94, 410), Urziceni=(456, 350), Vaslui=(509, 444), Zerind=(108, 531)) straight_line_distance_to_Bucharest = dict( Arad=366, Bucharest=0, Craiova=160, Drobeta=242, Eforie=161, Fagaras=178, Giurgiu=77, Hirsova=151, Iasi=266, Lugoj=244, Mehadia=241, Neamt=234, Oradea=380, Pitesti=98, Rimnicu=193, Sibiu=253, Timisoara=329, Urziceni=80, Vaslui=199, Zerind=374) """将通过每一个城市都可以找到它的邻居""" all_city_neighbor = set(neighbor_map) for i in neighbor_map: for a_city in neighbor_map[i]: if a_city not in all_city_neighbor: all_city_neighbor.add(a_city) city_neighbor = {a: {} for a in all_city_neighbor} for i in city_neighbor: if i in neighbormapWithweight: city_neighbor[i] = neighbormapWithweight[i] for i in city_neighbor: for j in neighbormapWithweight: if i in neighbormapWithweight[j]: city_neighbor[i][j] = neighbormapWithweight[j][i] print(city_neighbor) start = "Arad" goal = "Bucharest" start_to_goal_distance = dict() for i in romania_map_locations: """用曼哈顿距离""" # start_to_goal_distance[i] = abs(romania_map_locations[i][0] - romania_map_locations[goal][0]) # + abs(romania_map_locations[i][1] - romania_map_locations[goal][1]) """用A-B启发函数值""" # start_to_goal_distance[i] = straight_line_distance_to_Bucharest[i] """用直线距离""" start_to_goal_distance[i] = math.sqrt((romania_map_locations[i][0] - romania_map_locations[goal][0]) ** 2 + (romania_map_locations[i][1] - romania_map_locations[goal][1]) ** 2) print(start_to_goal_distance) """A*搜索——类似于一致代价搜索""" def astar_search(problem): node_new = Node(problem.initial) # 初始化node结点 frontier = [] # frontier表的初始化 frontier.append(node_new) # 添加初始结点 explored = [] # explored表初始化 while True: # 当frontier表中没有结果时返回失败 if len(frontier) == 0: return # 从frontier表中取出最优的结点拓展 node_new = frontier[0] # 从frontier表中删除已经拓展的结点 del frontier[0] # 若找到目标结点则对路径进行输出 if problem.goal_test(node_new.state): print("最小的代价值为", node_new.path_cost) return node_new.solution() # 将已经搜索表拓展新的结点 explored.append(node_new) # 搜索并拓展新的frontier表 for p in city_neighbor[node_new.state]: child = Node(p, node_new, None, (city_neighbor[node_new.state][p] + node_new.path_cost)) # 如果新的子结点不在explored和frontier中,则在frontier表中加入新的拓展结点 figure = 0 for i in explored or frontier: if i.state == child.state: figure += 1 if figure <= 0: # if child.state not in explored or frontier: frontier.append(Node(child.state, node_new, None, child.path_cost)) # 如果新结点在frontier中,则更新其一致代价 else: for i in frontier: if i.state == child.state: if i.path_cost < child.path_cost: i.path_cost = child.path_cost break # 对新加入的结点或者更新的结点进行排序 frontier = sorted(frontier, key=lambda x: x.path_cost + start_to_goal_distance[x.state]) """实现并输出A*搜索的路径""" romania_problem = Problem(start, goal) road = astar_search(romania_problem) print(road)
贪婪优先算法和A算法结果对比:
其中红线表示贪婪最佳优先搜索结果,蓝线表示A搜索。
- 从完备性角度上分析,因为测试的数据很少,所以无论是贪婪最佳优先搜索和A算法都可以找到最终的解,但是由于贪婪最佳优先搜索的性质,存在无解的情况,而A算法在满足一致性条件和可采纳性条件的情况下一定能求出解。
- 从最优性角度上分析:通过罗马尼亚旅游问题可以看出,A*搜索算法的结果要明显优于贪婪最佳优先搜索,并且在满足一致性条件和可采纳性条件的基础上可以求出最优解。
- 从时间和空间复杂度角度上分析:因为这两种算法虽然搜索的算法是相似的,A*是贪婪最佳优先算法的优化算法,只有启发函数的判断存在差异,所以时间和空间复杂度可以判断为相同。
该篇内容和算法思路来源于《人工智能:一种现代的方法(第3版)》,仅作为学习分享用。