栏目分类:
子分类:
返回
文库吧用户登录
快速导航关闭
当前搜索
当前分类
子分类
实用工具
热门搜索
文库吧 > IT > 软件开发 > 后端开发 > Python

关于nn.Cross Entropy Loss的真正理解

Python 更新时间: 发布时间: IT归档 最新发布 模块sitemap 名妆网 法律咨询 聚返吧 英语巴士网 伯小乐 网商动力

关于nn.Cross Entropy Loss的真正理解

关于nn.Cross Entropy Loss的真正理解

对于多分类损失函数Cross Entropy Loss,就不过多的解释,网上的博客不计其数。在这里,讲讲对于CE Loss的一些真正的理解。

首先大部分博客给出的公式如下:

其中p为真实标签值,q为预测值。
在低维复现此公式,结果如下。在此强调一点,pytorch中CE Loss并不会将输入的target映射为one-hot编码格式,而是直接取下标进行计算。

import torch
import torch.nn as nn
import math
import numpy as np

#官方的实现
entroy=nn.CrossEntropyLoss()
input=torch.Tensor([[0.1234, 0.5555,0.3211],[0.1234, 0.5555,0.3211],[0.1234, 0.5555,0.3211],])
target = torch.tensor([0,1,2])
output = entroy(input, target)
print(output)
#输出 tensor(1.1142)

#自己实现
input=np.array(input)
target = np.array(target)
def cross_entorpy(input, target):
    output = 0
    length = len(target)
    for i in range(length):
        hou = 0
        for j in input[i]:
            hou += np.log(input[i][target[i]])
        output += -hou
    return np.around(output / length, 4)
print(cross_entorpy(input, target))
#输出 3.8162

我们按照官方给的CE Loss和根据公式得到的答案并不相同,说明公式是有问题的。

正确公式


实现代码如下

import torch
import torch.nn as nn
import math
import numpy as np

entroy=nn.CrossEntropyLoss()
input=torch.Tensor([[0.1234, 0.5555,0.3211],[0.1234, 0.5555,0.3211],[0.1234, 0.5555,0.3211],])
target = torch.tensor([0,1,2])
output = entroy(input, target)
print(output)
#输出 tensor(1.1142)
#%%
input=np.array(input)
target = np.array(target)
def cross_entorpy(input, target):
    output = 0
    length = len(target)
    for i in range(length):
        hou = 0
        for j in input[i]:
            hou += np.exp(j)
        output += -input[i][target[i]] + np.log(hou)
    return np.around(output / length, 4)
print(cross_entorpy(input, target))
#输出 1.1142

对比自己实现的公式和官方给出的结果,可以验证公式的正确性。

观察公式可以发现其实nn.CrossEntropyLoss()是nn.logSoftmax()和nn.NLLLoss()的整合版本。

nn.logSoftmax(),公式如下

nn.NLLLoss(),公式如下


将nn.logSoftmax()作为变量带入nn.NLLLoss()可得


因为

可看做一个常量,故上式可化简为:

对比nn.Cross Entropy Loss公式,结果显而易见。

验证代码如下。

import torch
import torch.nn as nn
import math
import numpy as np

entroy=nn.CrossEntropyLoss()
input=torch.Tensor([[0.1234, 0.5555,0.3211],[0.1234, 0.5555,0.3211],[0.1234, 0.5555,0.3211],])
target = torch.tensor([0,1,2])
output = entroy(input, target)
print(output)
# 输出为tensor(1.1142)
m = nn.LogSoftmax()
loss = nn.NLLLoss()
input=m(input)
output = loss(input, target)
print(output)
# 输出为tensor(1.1142)
综上,可得两个结论:

1.nn.Cross Entropy Loss的公式。

2.nn.Cross Entropy Loss为nn.logSoftmax()和nn.NLLLoss()的整合版本。

转载请注明:文章转载自 www.wk8.com.cn
本文地址:https://www.wk8.com.cn/it/280193.html
我们一直用心在做
关于我们 文章归档 网站地图 联系我们

版权所有 (c)2021-2022 wk8.com.cn

ICP备案号:晋ICP备2021003244-6号