- 一、说明
- 二、使用PyTorch预置数据集
- 1. 预置数据集FashionMNIST介绍
- 2. 加载数据集
- 3. 对数据集处理和可视化
- 三、自定义数据集
- 1. 要实现的方法
- 2. 定义
- 3. `__init__`
- 4. `__len`
- 5. `__getitem__`
- 6. 准备数据、训练
- 7. 通过数据加载器传入数据
PyTorch提供了一些公共数据集,如FashionMNIST,可以在torch.utils.data.Dataset库里找到这些库。
准备环境 :
- python3
- pytorch
- pandas
- matplotlib
本文使用conda环境,安装pandas的命令:
conda install pandas
本文重点用到 DataSet和DataLoader。通俗地讲,DataSet是数据集,
DataLoader负责从DataSet里分批取数据。
以FashionMNIST为例。FashionMNIST是Zalando文章图片的数据集,包括6万个培训训练数据和1万个测试数据。每个示例是28*28的灰度图像,标签集是10个分类。
使用FashionMNIST时要设置参数:
- root
- train
- downloa=True , 表示从互联网下载数据
- transform:数据处理功能
import torch from torch.utils.data import Dataset from torchvision import datasets from torchvision.transforms import ToTensor import matplotlib.pyplot as plt training_data = datasets.FashionMNIST( root="data", train=True, download=True, transform=ToTensor() ) test_data = datasets.FashionMNIST( root="data", train=False, download=True, transform=ToTensor() )
运行结果:
这里有个报警,大意是给的NumPy数组不能写。暂且忽略。
手工建立10个分类:
labels_map = { 0: "T-Shirt", 1: "Trouser", 2: "Pullover", 3: "Dress", 4: "Coat", 5: "Sandal", 6: "Shirt", 7: "Sneaker", 8: "Bag", 9: "Ankle Boot", }
然后显示图形(灰度图):
figure = plt.figure(figsize=(8, 8)) cols, rows = 3, 3 for i in range(1, cols * rows + 1): sample_idx = torch.randint(len(training_data), size=(1,)).item() img, label = training_data[sample_idx] figure.add_subplot(rows, cols, i) plt.title(labels_map[label]) plt.axis("off") plt.imshow(img.squeeze(), cmap="gray") plt.show()
完整代码:
import torch from torch.utils.data import Dataset from torchvision import datasets from torchvision.transforms import ToTensor import matplotlib.pyplot as plt training_data = datasets.FashionMNIST( root="data", train=True, download=True, transform=ToTensor() ) test_data = datasets.FashionMNIST( root="data", train=False, download=True, transform=ToTensor() ) labels_map = { 0: "T-Shirt", 1: "Trouser", 2: "Pullover", 3: "Dress", 4: "Coat", 5: "Sandal", 6: "Shirt", 7: "Sneaker", 8: "Bag", 9: "Ankle Boot", } figure = plt.figure(figsize=(8, 8)) cols, rows = 3, 3 for i in range(1, cols * rows + 1): sample_idx = torch.randint(len(training_data), size=(1,)).item() img, label = training_data[sample_idx] figure.add_subplot(rows, cols, i) plt.title(labels_map[label]) plt.axis("off") plt.imshow(img.squeeze(), cmap="gray") plt.show()三、自定义数据集 1. 要实现的方法
自定义数据集需要实现三个方法:
- __init__
- __len__
- __getitem__
import os import pandas as pd from torchvision.io import read_image class CustomImageDataset(Dataset): def __init__(self, annotations_file, img_dir, transform=None, target_transform=None): self.img_labels = pd.read_csv(annotations_file) self.img_dir = img_dir self.transform = transform self.target_transform = target_transform def __len__(self): return len(self.img_labels) def __getitem__(self, idx): img_path = os.path.join(self.img_dir, self.img_labels.iloc[idx, 0]) image = read_image(img_path) label = self.img_labels.iloc[idx, 1] if self.transform: image = self.transform(image) if self.target_transform: label = self.target_transform(label) return image, label3. __init__
类的初始化执行函数,这里读入标签、传入图片文件夹、传入两种转换的目录。
def __init__(self, annotations_file, img_dir, transform=None, target_transform=None): self.img_labels = pd.read_csv(annotations_file) self.img_dir = img_dir self.transform = transform self.target_transform = target_transform4. __len
__len__返回数据集中样本数量。
def __len__(self): return len(self.img_labels)5. __getitem__
在给定索引上加载并返回数据集中的示例。基于该索引,它识别图像文件位置、转为张量、从csv检索标签,调用适用的转换功能。
def __getitem__(self, idx): img_path = os.path.join(self.img_dir, self.img_labels.iloc[idx, 0]) image = read_image(img_path) label = self.img_labels.iloc[idx, 1] if self.transform: image = self.transform(image) if self.target_transform: label = self.target_transform(label) return image, label6. 准备数据、训练
这个步骤是检索数据集,一次标记一个示例。在训练时,数据集会分块处理,DataLoader从dataset里分匹取数据集。这里每次返回一批是64个样本,分别包含了训练的特征和标签。
这里指定了shuffle=True,在遍历完后,会将数据打乱。
由于我这里没有自己真实的数据集,所以数据仍使用上面定义的Fashion_MNIST数据集。
from torch.utils.data import DataLoader train_dataloader = DataLoader(training_data, batch_size=64, shuffle=True) test_dataloader = DataLoader(test_data, batch_size=64, shuffle=True)7. 通过数据加载器传入数据
# Display image and label. train_features, train_labels = next(iter(train_dataloader)) print(f"Feature batch shape: {train_features.size()}") print(f"Labels batch shape: {train_labels.size()}") img = train_features[0].squeeze() label = train_labels[0] plt.imshow(img, cmap="gray") plt.show() print(f"Label: {label}")
运行情况: