Pytorch CPU 训练 MNIST Dataset 例子
1. 代码主要来源于:Source: https://github.com/pytorch/examples/
注意:应为版本不一致的原因,会出现下面的报错信息:
pytorch报错:IndexError: invalid index of a 0-dim tensor. Use tensor.item() to convert a 0-dim tensor to a Python number 是你的torch版本的不同造成的。
解决:将loss.data[0] 改成loss.item()
2. 源代码:#import Libraries from __future__ import print_function import argparse import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from torchvision import datasets, transforms from torch.autograd import Variable args = {} kwargs = {} args['batch_size'] = 1000 args['test_batch_size'] = 1000 args['epochs'] = 10 #The number of Epochs is the number of times you go through the full dataset. args['lr'] = 0.01 #Learning rate is how fast it will decend. args['momentum'] = 0.5 #SGD momentum (default: 0.5) Momentum is a moving average of our gradients (helps to keep direction). args['seed'] = 1 #random seed args['log_interval'] = 10 args['cuda'] = False # False #load the data train_loader = torch.utils.data.DataLoader( datasets.MNIST('../data', train=True, download=True, transform=transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,)) ])), batch_size=args['batch_size'], shuffle=True, **kwargs) test_loader = torch.utils.data.DataLoader( datasets.MNIST('../data', train=False, transform=transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,)) ])), batch_size=args['test_batch_size'], shuffle=True, **kwargs) class Net(nn.Module): #This defines the structure of the NN. def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(1, 10, kernel_size=5) self.conv2 = nn.Conv2d(10, 20, kernel_size=5) self.conv2_drop = nn.Dropout2d() #Dropout self.fc1 = nn.Linear(320, 50) self.fc2 = nn.Linear(50, 10) def forward(self, x): #Convolutional Layer/Pooling Layer/Activation x = F.relu(F.max_pool2d(self.conv1(x), 2)) #Convolutional Layer/Dropout/Pooling Layer/Activation x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2)) x = x.view(-1, 320) #Fully Connected Layer/Activation x = F.relu(self.fc1(x)) x = F.dropout(x, training=self.training) #Fully Connected Layer/Activation x = self.fc2(x) #Softmax gets probabilities. return F.log_softmax(x, dim=1) def train(epoch): model.train() for batch_idx, (data, target) in enumerate(train_loader): if args['cuda']: data, target = data.cuda(), target.cuda() #Variables in Pytorch are differenciable. data, target = Variable(data), Variable(target) #This will zero out the gradients for this batch. optimizer.zero_grad() output = model(data) # Calculate the loss The negative log likelihood loss. It is useful to train a classification problem with C classes. loss = F.nll_loss(output, target) #dloss/dx for every Variable loss.backward() #to do a one-step update on our parameter. optimizer.step() #Print out the loss periodically. if batch_idx % args['log_interval'] == 0: print('Train Epoch: {} [{}/{} ({:.0f}%)]tLoss: {:.6f}'.format( epoch, batch_idx * len(data), len(train_loader.dataset), 100. * batch_idx / len(train_loader), loss.item())) def test(): model.eval() test_loss = 0 correct = 0 for data, target in test_loader: if args['cuda']: data, target = data.cuda(), target.cuda() data, target = Variable(data, volatile=True), Variable(target) output = model(data) test_loss += F.nll_loss(output, target, size_average=False).item() # sum up batch loss pred = output.data.max(1, keepdim=True)[1] # get the index of the max log-probability correct += pred.eq(target.data.view_as(pred)).long().cpu().sum() test_loss /= len(test_loader.dataset) print('nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)n'.format( test_loss, correct, len(test_loader.dataset), 100. * correct / len(test_loader.dataset))) model = Net() if args['cuda']: model.cuda() optimizer = optim.SGD(model.parameters(), lr=args['lr'], momentum=args['momentum']) for epoch in range(1, args['epochs'] + 1): train(epoch) test()3. 最终结果:
Test set: Average loss: 0.2741, Accuracy: 9209/10000 (92%)