栏目分类:
子分类:
返回
文库吧用户登录
快速导航关闭
当前搜索
当前分类
子分类
实用工具
热门搜索
文库吧 > IT > 软件开发 > 游戏开发 > Cocos2d-x

【图论——第五讲】Bellman-Ford算法求单源最短路及其队列优化SPFA 算法

Cocos2d-x 更新时间: 发布时间: IT归档 最新发布 模块sitemap 名妆网 法律咨询 聚返吧 英语巴士网 伯小乐 网商动力

【图论——第五讲】Bellman-Ford算法求单源最短路及其队列优化SPFA 算法

ฅ(๑˙o˙๑)ฅ 大家好, 欢迎大家光临我的博客:面向阿尼亚学习
算法学习笔记系列持续更新中~


文章目录
  • 一、前言
  • 二、Bellman-Ford算法
  • 三、Bellman-Ford算法队列优化SPFA 算法
  • 最后


一、前言

单源最短路,指的是求一个点,到其他所有点的最短距离。即起点是固定的,单一的

注意:最短路问题的核心在于,把问题抽象成一个最短路问题,并建图。图论相关的问题,不侧重于算法原理,而侧重于对问题的抽象。

上篇文章
【图论——第四讲】dijkstra算法求单源最短路及其堆优化提到

所有边的权重都是正数,通常有两种算法

1.朴素Dijkstra
时间复杂度O(n2),其中n是图中点的个数,m是边的个数
2.堆优化版的Dijkstra
时间复杂度O(mlogn),其中n是图中点的个数,m是边的个数

如果图存在负边权呢?还能用Dijkstra算法吗?

答案是不可以。

分析:

Dijkstra算法的3个步骤

1、找到当前未标识的且离源点最近的点t
2、对t号点点进行标识
3、用t号点更新其他点的距离

如图:

通过dijkstra算法在图中走出来的最短路径是1 -> 2 -> 4 -> 5,算出 1 号点到 5 号点的最短距离是2 + 2 + 1 = 5,然而还存在一条路径是1 -> 3 -> 4 -> 5,该路径的长度是5 + (-2) + 1 = 4因此存在负边权的图dijkstra 算法失效

dijkstra详细步骤分析

  • 初始dist[1] = 0

  • 找到了未标识且离源点1最近的结点1,标记1号点,用1号点更新其他所有点的距离,2号点被更新成dist[2] = 2,3号点被更新成dist[3] = 5

  • 找到了未标识且离源点1最近的结点2,标识2号点,用2号点更新其他所有点的距离,4号点被更新成dist[4] = 4

  • 找到了未标识且离源点1最近的结点4,标识4号点,用4号点更新其他所有点的距离,5号点被更新成dist[5] = 5

  • 找到了未标识且离源点1最近的结点3,标识3号点,用3号点更新其他所有点的距离,4号点被更新成dist[4] = 3

  • 结束
    得到1号点到5号点的最短距离是5,对应的路径是1 -> 2 -> 4 -> 5,并不是真正的最短距离

那么存在负边权的图怎么求最短距离呢?


二、Bellman-Ford算法

时间复杂度 O(nm), n 表示点数,m 表示边数

Bellman - ford 算法是求含负权图的单源最短路径的一种算法,效率较低,代码难度较小。其原理为连续进行松弛,在每次松弛时把每条边都更新一下,若在 n-1 次松弛后还能更新,则说明图中有负环,因此无法得出结果,否则就完成。

bellman - ford算法的具体步骤

for n次
for 所有边 a,b,w (松弛操作)
dist[b] = min(dist[b],dist[a] + w)

int n, m;       // n表示点数,m表示边数
int dist[N];        // dist[x]存储1到x的最短路距离

struct Edge     // 边,a表示出点,b表示入点,w表示边的权重
{
    int a;
    int b;
    int w;
}edges[M];

// 求1到n的最短路距离,如果无法从1走到n,则返回-1。
int bellman_ford()
{
    memset(dist, 0x3f, sizeof dist);
    dist[1] = 0;

// 如果第n次迭代仍然会松弛三角不等式,就说明存在一条长度是n+1的最短路径,
//由抽屉原理,路径中至少存在两个相同的点,说明图中存在负权回路。
    for (int i = 0; i < n; i ++ )
    {
        for (int j = 0; j < m; j ++ )
        {
            int a = edges[j].a, b = edges[j].b, w = edges[j].w;
                dist[b] = min(dist[b],dist[a] + w)
                
        }
    }

    if (dist[n] > 0x3f3f3f3f / 2) return -1;
    return dist[n];
}

三、Bellman-Ford算法队列优化SPFA 算法

SPFA 算法是 Bellman-Ford算法 的队列优化算法的别称,通常用于求含负权边的单源最短路径,以及判负权环。
SPFA一般情况复杂度是O(m) 最坏情况下复杂度和朴素 Bellman-Ford 相同,为O(nm)。n 表示点数,m 表示边数

算法思想
Bellman_ford算法会遍历所有的边,但是有很多的边遍历了其实没有什么意义,我们只用遍历那些到源点距离变小的点所连接的边即可,只有当一个点的前驱结点更新了,该节点才会得到更新;因此考虑到这一点,我们将创建一个队列每一次加入距离被更新的结点。考虑用BFS来做优化。用一个队列queue,来存放距离变小的节点。

算法步骤
queue <– 1
while queue 不为空
(1) t <– 队头
queue.pop()
(2)用 t 更新所有出边 t –> b,权值为w
queue <– b (若该点被更新过,则拿该点更新其他点)

模板如下:

给定一个 n 个点 m 条边的有向图,图中可能存在重边和自环, 边权可能为负数。
请你求出 1 号点到 n 号点的最短距离,如果无法从 1 号点走到 n 号点,则输出 impossible。
数据保证不存在负权回路。

#include
using namespace std;
const int N=1e5+10;
int h[N],ne[N],e[N],w[N],idx;
int m,n;
queueq;
int st[N],d[N]; //st表示队列里是否有某值; 
 // 存储每个点到1号点的最短距离
 // 存储每个点是否在队列中
void add(int a,int b,int c)
{
    e[idx]=b;w[idx]=c;ne[idx]=h[a],h[a]=idx++;
 } 
int spfa()
{
    d[1]=0;
    q.push(1);
    st[1]=1;                 //表示队列里有1了;         
    while(q.size())
    {
        int t=q.front();q.pop();
        st[t]=0;
        for(int i=h[t];i!=-1;i=ne[i])
        {
            int j=e[i];
            if(d[j]>d[t]+w[i])    //是否可更新; 
            {
                d[j]=d[t]+w[i];   //更新;
                if(!st[j])        //判断队列里是否已经有j; 
                {
                    st[j]=1;      
                    q.push(j);    //没有则将j插入队列; 
                }
            }
        }
    }
    if(d[n]>0x3f3f3f3f/2)cout<<"impossible";   //可能存在负权边; 
    else cout<
    memset(h,-1,sizeof(h));
    memset(d,0x3f,sizeof(d));
    cin>>n>>m;
    for(int i=0;i
        int a,b,c;
        cin>>a>>b>>c;
        add(a,b,c);
    }
    spfa();
}

若要使用SPFA算法,一定要求图中不能有负权回路。只要图中没有负权回路,都可以用SPFA,这个算法的限制是比较小的。

当然我们也可以用PSFA算法来判断图中有没有负环。

给定一个 n 个点 m 条边的有向图,图中可能存在重边和自环, 边权可能为负数。
如果图中存在负权回路,则输出 Yes,否则输出 No。
请你判断图中是否存在负权回路。

int n;      // 总点数
int h[N], w[N], e[N], ne[N], idx;       // 邻接表存储所有边
int dist[N], cnt[N];        // dist[x]存储1号点到x的最短距离,cnt[x]存储1到x的最短路中经过的点数
bool st[N];     // 存储每个点是否在队列中

// 如果存在负环,则返回true,否则返回false。
bool spfa()
{
    // 不需要初始化dist数组
    // 原理:如果某条最短路径上有n个点(除了自己),那么加上自己之后一共有n+1个点,由抽屉原理一定有两个点相同,所以存在环。

    queue q;
    for (int i = 1; i <= n; i ++ )
    {
        q.push(i);
        st[i] = true;
    }

    while (q.size())
    {
        auto t = q.front();
        q.pop();

        st[t] = false;

        for (int i = h[t]; i != -1; i = ne[i])
        {
            int j = e[i];
            if (dist[j] > dist[t] + w[i])
            {
                dist[j] = dist[t] + w[i];
                cnt[j] = cnt[t] + 1;
                if (cnt[j] >= n) return true;       // 如果从1号点到x的最短路中包含至少n个点(不包括自己),则说明存在环
                if (!st[j])
                {
                    q.push(j);
                    st[j] = true;
                }
            }
        }
    }

    return false;
}

最后

莫言真理无穷尽,寸进自有寸进欢

转载请注明:文章转载自 www.wk8.com.cn
本文地址:https://www.wk8.com.cn/it/968120.html
我们一直用心在做
关于我们 文章归档 网站地图 联系我们

版权所有 (c)2021-2022 wk8.com.cn

ICP备案号:晋ICP备2021003244-6号